Convergence of finite volume schemes for the coupling between the inviscid Burgers equation and a particle

نویسندگان

  • Nina Aguillon
  • Frédéric Lagoutière
  • Nicolas Seguin
چکیده

The convergence of a class of finite volume schemes for a model of coupling between a Burgers fluid and a pointwise particle is proved. In this model, introduced by Lagoutière, Seguin and Takahashi in 2008, the particle is seen as a moving point through which an interface condition is imposed, which links the velocity of the fluid on the left and on the right of the particle and the velocity of the particle (the three quantities are all not equal in general). The total momentum of the system is conserved through time. The proposed schemes are consistent with a “large enough” part of the interface conditions. The proof of convergence is an extension of the one of Andreianov and Seguin (2012) to the case where the particle moves under the influence of the fluid (two-way coupling). This extension contains two new main difficulties: first, the fluxes and interface conditions are time-dependent, and second, the coupling between an ODE and a PDE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Solving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes

In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

The Solution of Coupled Nonlinear Burgers' Equations Using Interval Finite-difference ‎Method

In this paper an coupled Burgers' equation is considered and then a method entitled interval finite-difference method is introduced to find the approximate interval solution of interval model in level wise cases. Finally for more illustration, the convergence theorem is confirmed and a numerical example is solved.

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2017